LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Almost-prime times in horospherical flows on the space of lattices

Photo by joelfilip from unsplash

An integer is called almost-prime if it has fewer than a fixed number of prime factors. In this paper, we study the asymptotic distribution of almost-prime entries in horospherical flows… Click to show full abstract

An integer is called almost-prime if it has fewer than a fixed number of prime factors. In this paper, we study the asymptotic distribution of almost-prime entries in horospherical flows on \begin{document}$ \Gamma\backslash {{\rm{SL}}}_n(\mathbb{R}) $\end{document} , where \begin{document}$ \Gamma $\end{document} is either \begin{document}$ {{\rm{SL}}}_n(\mathbb{Z}) $\end{document} or a cocompact lattice. In the cocompact case, we obtain a result that implies density for almost-primes in horospherical flows where the number of prime factors is independent of basepoint, and in the space of lattices we show the density of almost-primes in abelian horospherical orbits of points satisfying a certain Diophantine condition. Along the way we give an effective equidistribution result for arbitrary horospherical flows on the space of lattices, as well as an effective rate for the equidistribution of arithmetic progressions in abelian horospherical flows.

Keywords: horospherical flows; document; flows space; almost prime; space lattices

Journal Title: Journal of Modern Dynamics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.