LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Research on two-class and four-class action recognition based on EEG signals

Photo by shotsbywolf from unsplash

BMI has attracted widespread attention in the past decade, which has greatly improved the living conditions of patients with motor disorders. The application of EEG signals in lower limb rehabilitation… Click to show full abstract

BMI has attracted widespread attention in the past decade, which has greatly improved the living conditions of patients with motor disorders. The application of EEG signals in lower limb rehabilitation robots and human exoskeleton has also been gradually applied by researchers. Therefore, the recognition of EEG signals is of great significance. In this paper, a CNN-LSTM neural network model is designed to study the two-class and four-class motion recognition of EEG signals. In this paper, a brain-computer interface experimental scheme is designed. Combining the characteristics of EEG signals, the time-frequency characteristics of EEG signals and event-related potential phenomena are analyzed, and the ERD/ERS characteristics are obtained. Pre-process EEG signals, and propose a CNN-LSTM neural network model to classify the collected binary and four-class EEG signals. The experimental results show that the CNN-LSTM neural network model has a good effect, and its average accuracy and kappa coefficient are higher than the other two classification algorithms, which also shows that the classification algorithm selected in this paper has a good classification effect.

Keywords: recognition; two class; class; four class; eeg signals

Journal Title: Mathematical Biosciences and Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.