LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction Model of hospitalization time of COVID-19 patients based on Gradient Boosted Regression Trees

Photo from wikipedia

When an outbreak of COVID-19 occurs, it will cause a shortage of medical resources and the surge of demand for hospital beds. Predicting the length of stay (LOS) of COVID-19… Click to show full abstract

When an outbreak of COVID-19 occurs, it will cause a shortage of medical resources and the surge of demand for hospital beds. Predicting the length of stay (LOS) of COVID-19 patients is helpful to the overall coordination of hospital management and improves the utilization rate of medical resources. The purpose of this paper is to predict LOS for patients with COVID-19, so as to provide hospital management with auxiliary decision-making of medical resource scheduling. We collected the data of 166 COVID-19 patients in a hospital in Xinjiang from July 19, 2020, to August 26, 2020, and carried out a retrospective study. The results showed that the median LOS was 17.0 days, and the average of LOS was 18.06 days. Demographic data and clinical indicators were included as predictive variables to construct a model for predicting the LOS using gradient boosted regression trees (GBRT). The MSE, MAE and MAPE of the model are 23.84, 4.12 and 0.76 respectively. The importance of all the variables involved in the prediction of the model was analyzed, and the clinical indexes creatine kinase-MB (CK-MB), C-reactive protein (CRP), creatine kinase (CK), white blood cell count (WBC) and the age of patients had a higher contribution to the LOS. We found our GBRT model can accurately predict the LOS of COVID-19 patients, which will provide good assistant decision-making for medical management.

Keywords: covid patients; gradient boosted; boosted regression; regression trees; model

Journal Title: Mathematical Biosciences and Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.