LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of hearing preservation after acoustic neuroma surgery based on SMOTE-XGBoost

Photo from wikipedia

Prior to the surgical removal of an acoustic neuroma, the majority of patients anticipate that their hearing will be preserved to the greatest possible extent following surgery. This paper proposes… Click to show full abstract

Prior to the surgical removal of an acoustic neuroma, the majority of patients anticipate that their hearing will be preserved to the greatest possible extent following surgery. This paper proposes a postoperative hearing preservation prediction model for the characteristics of class-imbalanced hospital real data based on the extreme gradient boost tree (XGBoost). In order to eliminate sample imbalance, the synthetic minority oversampling technique (SMOTE) is applied to increase the number of underclass samples in the data. Multiple machine learning models are also used for the accurate prediction of surgical hearing preservation in acoustic neuroma patients. In comparison to research results from existing literature, the experimental results found the model proposed in this paper to be superior. In summary, the method this paper proposes can make a significant contribution to the development of personalized preoperative diagnosis and treatment plans for patients, leading to effective judgment for the hearing retention of patients with acoustic neuroma following surgery, a simplified long medical treatment process and saved medical resources.

Keywords: hearing preservation; preservation acoustic; acoustic neuroma; prediction; smote

Journal Title: Mathematical Biosciences and Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.