LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust capped norm dual hyper-graph regularized non-negative matrix tri-factorization

Photo from wikipedia

Non-negative matrix factorization (NMF) has been widely used in machine learning and data mining fields. As an extension of NMF, non-negative matrix tri-factorization (NMTF) provides more degrees of freedom than… Click to show full abstract

Non-negative matrix factorization (NMF) has been widely used in machine learning and data mining fields. As an extension of NMF, non-negative matrix tri-factorization (NMTF) provides more degrees of freedom than NMF. However, standard NMTF algorithm utilizes Frobenius norm to calculate residual error, which can be dramatically affected by noise and outliers. Moreover, the hidden geometric information in feature manifold and sample manifold is rarely learned. Hence, a novel robust capped norm dual hyper-graph regularized non-negative matrix tri-factorization (RCHNMTF) is proposed. First, a robust capped norm is adopted to handle extreme outliers. Second, dual hyper-graph regularization is considered to exploit intrinsic geometric information in feature manifold and sample manifold. Third, orthogonality constraints are added to learn unique data presentation and improve clustering performance. The experiments on seven datasets testify the robustness and superiority of RCHNMTF.

Keywords: tri factorization; matrix tri; non negative; negative matrix

Journal Title: Mathematical Biosciences and Engineering
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.