LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of supercritical CO2 dried cellulose aerogels as nano-biomaterials

Photo from wikipedia

Cellulose is the renewable, biodegradable and abundant resource and is suggested as an alternative material to silica due to the high price and environmental load of silica. The first step… Click to show full abstract

Cellulose is the renewable, biodegradable and abundant resource and is suggested as an alternative material to silica due to the high price and environmental load of silica. The first step for cellulose aerogel production is to dissolve cellulose, and hydrated calcium thiocyanate molten salt is one of the most effective solvents for preparing porous material. Cellulose aerogels were prepared from dissolved cellulose samples of different degree of polymerization (DP) and drying methods, and tested with shrinkage, density and mechanical strength. Supercritical CO2 dried cellulose aerogels shrank less compared to freeze-dried cellulose aerogels, whereas the densities were increased according to the DP increases in both cellulose aerogels. Furthermore, scanning electron microscope (SEM) images showed that the higher DP cellulose aerogels were more uniform with micro-porous structure. Regarding the mechanical strength of cellulose aerogels, supercritical CO2 dried cellulose aerogels with higher molecular weight were much more solid.

Keywords: cellulose aerogels; dried cellulose; supercritical co2; co2 dried

Journal Title: Journal of the Korean Physical Society
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.