We investigated the mechanism of mobility enhancement after the dehydrogenation process in polycrystalline silicon (poly-Si) thin films. The dehydrogenation process was performed by using an in-situ CVD chamber in a… Click to show full abstract
We investigated the mechanism of mobility enhancement after the dehydrogenation process in polycrystalline silicon (poly-Si) thin films. The dehydrogenation process was performed by using an in-situ CVD chamber in a N2 ambient or an ex-situ furnace in air ambient. We observed that the dehydrogenated poly-Si in a N2 ambient had a lower oxygen concentration than the dehydrogenated poly-Si annealed in an air ambient. The in-situ dehydrogenation increased the (111) preferred orientation of poly-Si and reduced the oxygen concentration in poly-Si thin films, leading to a reduction of the trap density near the valence band. This phenomenon gave rise to an increase of the field-effect mobility of the poly-Si thin film transistor.
               
Click one of the above tabs to view related content.