LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of mechanochemical surface preparation on bonding to zirconia of a tri-n-butylborane initiated resin.

Photo from wikipedia

This study aimed to evaluate the effect of surface preparation on bond strength of a tri-n-butylborane initiated resin (MMA-TBB) bonded to zirconia. Zirconia disks were either airborne-particle abraded with alumina… Click to show full abstract

This study aimed to evaluate the effect of surface preparation on bond strength of a tri-n-butylborane initiated resin (MMA-TBB) bonded to zirconia. Zirconia disks were either airborne-particle abraded with alumina or silica-coated. The disks were thereafter primed with one of the following materials: phosphate-silane (Clearfil Ceramic Primer), phosphate (Alloy Primer), or silane (ESPE Sil). The specimens were bonded with the MMA-TBB. Shear bond strength was determined both before and after thermocycling. Bond strength of unprimed zirconia (control) was not affected by the surface roughness of each adherend. Priming with phosphate was effective for bonding alumina-blasted zirconia. Priming with silane was effective for bonding silica-coated zirconia. Priming effect of the phosphate-silane was superior to that of silane alone for bonding silica-coated zirconia. Bond strength to zirconia of the MMATBB is significantly influenced by a combination of the specific functional monomer and the surface modification performed rather than the material surface roughness.

Keywords: silane; surface preparation; surface; effect; zirconia; bond strength

Journal Title: Dental materials journal
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.