LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of silk fibroin electrogel coating for zirconia material surface.

Photo by onefiftith from unsplash

Zirconia is commonly used in dental applications. It has been reported that surface-modified zirconia implants showed better performance in vivo than machined zirconia implants. Silk fibroin electrogel is a good… Click to show full abstract

Zirconia is commonly used in dental applications. It has been reported that surface-modified zirconia implants showed better performance in vivo than machined zirconia implants. Silk fibroin electrogel is a good candidate for controlled drug delivery; however, the use of silk fibroin electrogel on zirconia implants has not previously been reported. The aim of this study was to investigate a method to coat zirconia implants with silk fibroin electrogel and evaluate the mechanical and biological properties of the coating. The results show that the wettability of the coating was close to that of sand-blasted and acid-etched (SLA)-treated zirconia, and the bond strength was larger than that of the coating prepared from silk fibroin aqueous solution. ATR-FTIR spectra provided evidence that the secondary structure changed during the electrogelation process. Culturing cells on the coating revealed its nontoxicity to osteoblast-like cells. Thus, it can be suggested that a silk fibroin electrogel coating is a promising biocompatible and degradable drugdelivery material for zirconia implants.

Keywords: zirconia; silk fibroin; zirconia implants; fibroin electrogel

Journal Title: Dental materials journal
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.