LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Catalytic ability improvement of phenylalanine hydroxylase from Chromobacterium violaceum by N-terminal truncation and proline introduction.

Photo by ascalaphe from unsplash

Phenylalanine hydroxylase from Chromobacterium violaceum (CvPAH) is a monomeric enzyme that converts phenylalanine to tyrosine. It shares high amino acid identity and similar structure with a subunit of human phenylalanine… Click to show full abstract

Phenylalanine hydroxylase from Chromobacterium violaceum (CvPAH) is a monomeric enzyme that converts phenylalanine to tyrosine. It shares high amino acid identity and similar structure with a subunit of human phenylalanine hydroxylase that is a tetramer, resulting in the latent application in medications. In this study, semirational design was applied to CvPAH to improve the catalytic ability based on molecular dynamics simulation analyses. Four N-terminal truncated variants and one single point variant were constructed and characterized. The D267P variant showed a 2.1-fold increased thermal stability compared to the wild type, but lower specific activity was noted compared with the wild type. The specific activity of all truncated variants was a greater than 25% increase compared to the wild type, and these variants showed similar or slightly decreased thermostability with the exception of the N-Δ9 variant. Notably, the N-Δ9 variant exhibited a 1.2-fold increased specific activity, a 1.3-fold increased thermostability and considerably increased catalytic activity under the neutral environment compared with the wild type. These properties of the N-Δ9 variant could advance medical and pharmaceutical applications of CvPAH. Our findings indicate that the N-terminus might modulate substrate binding, and are directives for further modification and functional research of PAH and other enzymes.

Keywords: hydroxylase chromobacterium; catalytic ability; chromobacterium violaceum; phenylalanine; phenylalanine hydroxylase

Journal Title: Journal of microbiology and biotechnology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.