LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Grain Refinement Enhanced Tensile Strength, Fracture Toughness and Fatigue Crack Propagation Resistance of a High Zn-Containing Al-Zn-Mg-Cu Alloy

Photo from wikipedia

In present work, a high Zn-containing Al-Zn-Mg-Cu alloy with different grain sizes was fabricated by extrusion and related precipitation characteristics and mechanical property were investigated after uniform heat treatments. The… Click to show full abstract

In present work, a high Zn-containing Al-Zn-Mg-Cu alloy with different grain sizes was fabricated by extrusion and related precipitation characteristics and mechanical property were investigated after uniform heat treatments. The results showed that precipitation characteristics for the three alloys were almost the same. Matrix precipitates were GPII zone and η' phase and possessed small size and dense distribution while grain boundary precipitates exhibited discontinuous distribution. The rank of strength and fracture toughness for the three alloys are SG>MG>LG. Tearing ridges had been found on all the fracture surface while only LG alloy possess obvious dimple characteristics. The a-N curve showed that crack length list is MG>LG >SG under a same cycle number. The da/dN-ΔK curve also proved that fatigue crack propagation (FCP) rate of MG alloy is slightly larger than that of LG alloy, both were apparently larger than that of SG alloy. The width of fatigue striations on FCP fracture surface also backed it. Besides, obvious transgranular cracking characteristics and apparent secondary cracks were found on the FCP fracture surface.

Keywords: high containing; fracture; alloy; strength fracture; containing alloy; grain

Journal Title: Defect and Diffusion Forum
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.