In this paper, we investigate the combined effects of Brownian motion, thermophoresis and Cattaneo-Christov heat flux on Casson nanofluid boundary layer flow over a stretching cylinder. The governing partial differential… Click to show full abstract
In this paper, we investigate the combined effects of Brownian motion, thermophoresis and Cattaneo-Christov heat flux on Casson nanofluid boundary layer flow over a stretching cylinder. The governing partial differential equations (PDEs) are obtained and transformed into a system of ordinary differential equations (ODEs) by employing appropriate similarity solution. The model nonlinear boundary value problem is tackled numerically using fourth-fifth order Runge-Kutta integration scheme with shooting technique. Effects of various thermophysical parameters on the velocity, temperature and concentration profiles as well as skin friction and Sherwood number are presented graphically and discussed quantitatively. It is found that thermal relaxation parameter minimizes the temperature field and boosting the rate of heat transfer per unit volume. This heat flux conditions are very useful for thermal transport control in manufacturing and chemical industries.
               
Click one of the above tabs to view related content.