LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determining the Optimum Arrangement of Micromixers in a Microchannel Filled with CuO-Water Nanofluid via Minimizing Entropy Generation

Photo by drew_hays from unsplash

In this study, the flow of CuO-water nanofluid in a parallel-plate microchannel in the presence of several micromixers is examined to find optimum arrangements of the micromixers. The governing equations,… Click to show full abstract

In this study, the flow of CuO-water nanofluid in a parallel-plate microchannel in the presence of several micromixers is examined to find optimum arrangements of the micromixers. The governing equations, which are accompanied with the slip velocity and temperature jump boundary conditions, are solved by the Finite Volume Method and SIMPLER algorithm. The study is conducted for the Reynolds numbers in the range of 10 ≤ Re ≤ 100, Knudsen numbers ranging of 0 ≤ Kn ≤ 0.1 and volume fraction of nanoparticles ranging of 0 ≤ ϕ ≤ 4%. The results show that the optimum arrangements of the micromixers belong to cases in which the heights of micromixers are smaller, the distance between them is lower, and their numbers are more.

Keywords: determining optimum; cuo water; arrangement micromixers; water nanofluid; optimum arrangement

Journal Title: Defect and Diffusion Forum
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.