LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Non-Isothermal Crystallization and Viscoelastic Behavior of Polypropylene/Nanoclay Composites Fabricated from Masterbatch by Using a Mini Extruder

Photo by jannerboy62 from unsplash

Polypropylene(PP)/nanoclay composites samples have been fabricated by melt compounding the PP pellets with nanoclay masterbatch (i.e. 50 wt% of nanoclay) using a mini extruder. The effect of three loadings of… Click to show full abstract

Polypropylene(PP)/nanoclay composites samples have been fabricated by melt compounding the PP pellets with nanoclay masterbatch (i.e. 50 wt% of nanoclay) using a mini extruder. The effect of three loadings of nanoclay (i.e. 5, 10, and 15 wt%) on the morphology, non-isothermal crystallization, and viscoelastic behavior of the PP/nanoclay composites were investigated. All the nanocomposites samples were characterized by using Scanning Electron Microscope (SEM), Differential Scanning Calorimetry (DSC), and an oscillatory rheometer. The SEM results showed that the distribution of nanoclay in the PP was relatively good at all level of loadings. The DSC analysis results showed that the nanoclay has dramatically enhanced the crystallization temperature, from 117°C (for neat PP) to 127-129°C (for nanocomposites). Additionally, the frequency sweep test results exhibited that the presence of nanoclay increased the viscoelastic behavior of the PP matrix.

Keywords: viscoelastic behavior; nanoclay composites; crystallization; polypropylene nanoclay; nanoclay

Journal Title: Defect and Diffusion Forum
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.