The microstructure evolution during the annealing treatment of a recycled copper after cold rolling to total strain of 2.6 was investigated. The cold deformation resulted in the elongation of initial… Click to show full abstract
The microstructure evolution during the annealing treatment of a recycled copper after cold rolling to total strain of 2.6 was investigated. The cold deformation resulted in the elongation of initial grains along rolling direction and the strain-induced formation of subboundaries. Annealing recovery occurred in the temperature range 100-250 °C. The recrystallized microstructures were observed after annealing at 300-400 °C. The hardness of partially recrystallized copper samples was interpreted in terms of dislocation strengthening. The recrystallization kinetics was estimated according to a Johnson–Mehl–Avrami–Kolmogorov equation using different methods for recrystallized fraction determination, i.e., the fractional softening, the grain orientation spread, and the Kernel average misorientation.
               
Click one of the above tabs to view related content.