LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of Various Cooling Systems After Exercise-Induced Hyperthermia.

Photo from wikipedia

CONTEXT Rapid diagnosis and expeditious cooling of individuals with exertional heat stroke is paramount for survival. OBJECTIVE To evaluate the efficacy of various cooling systems after exercise-induced hyperthermia. DESIGN Crossover… Click to show full abstract

CONTEXT Rapid diagnosis and expeditious cooling of individuals with exertional heat stroke is paramount for survival. OBJECTIVE To evaluate the efficacy of various cooling systems after exercise-induced hyperthermia. DESIGN Crossover study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS Twenty-two men (age = 24 ± 2 years, height = 1.76 ± 0.07 m, mass = 70.7 ± 9.5 kg) participated. INTERVENTION(S) Each participant completed a treadmill walk until body core temperature reached 39.50°C. The treadmill walk was performed at 5.3 km/h on an 8.5% incline for 50 minutes and then at 5.0 km/h until the end of exercise. Each participant experienced 4 cooling phases in a randomized, repeated-crossover design: (1) no cooling (CON), (2) body-cooling unit (BCU), (3) EMCOOLS Flex.Pad (EC), and (4) ThermoSuit (TS). Cooling continued for 30 minutes or until body core temperature reached 38.00°C, whichever occurred earlier. MAIN OUTCOME MEASURE(S) Body core temperature (obtained via an ingestible telemetric temperature sensor) and heart rate were measured continuously during the exercise and cooling phases. Rating of perceived exertion was monitored every 5 minutes during the exercise phase and thermal sensation every minute during the cooling phase. RESULTS The absolute cooling rate was greatest with TS (0.16°C/min ± 0.06°C/min) followed by EC (0.12°C/min ± 0.04°C/min), BCU (0.09°C/min ± 0.06°C/min), and CON (0.06°C/min ± 0.02°C/min; P < .001). The TS offered a greater cooling rate than all other cooling modalities in this study, whereas EC offered a greater cooling rate than both CON and BCU (P < .0083 for all). Effect-size calculations, however, showed that EC and BCU were not clinically different. CONCLUSION These findings provide objective evidence for selecting the most effective cooling system of those we evaluated for cooling individuals with exercise-induced hyperthermia. Nevertheless, factors other than cooling efficacy need to be considered when selecting an appropriate cooling system.

Keywords: induced hyperthermia; exercise induced; cooling systems; min; exercise; various cooling

Journal Title: Journal of athletic training
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.