LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Myelinosome organelles in pathological retinas: ubiquitous presence and dual role in ocular proteostasis maintenance

Photo by kangterbang from unsplash

The timely and efficient elimination of aberrant proteins and damaged organelles, formed in response to various genetic and environmental stressors, is a vital need for all cells of the body.… Click to show full abstract

The timely and efficient elimination of aberrant proteins and damaged organelles, formed in response to various genetic and environmental stressors, is a vital need for all cells of the body. Recent lines of evidence point out several non-classical strategies employed by ocular tissues to cope with aberrant constituents generated in the retina and in the retinal pigmented epithelium cells exposed to various stressors. Along with conventional strategies relying upon the intracellular degradation of aberrant constituents through ubiquitin-proteasome and/or lysosome-dependent autophagy proteolysis, two non-conventional mechanisms also contribute to proteostasis maintenance in ocular tissues. An exosome-mediated clearing and a myelinosome-driven secretion mechanism do not require intracellular degradation but provide the export of aberrant constituents and “waste proteins” outside of the cells. The current review is centered on the non-degradative myelinosome-driven secretion mechanism, which operates in the retina of transgenic Huntington’s disease R6/1 model mice. Myelinosome-driven secretion is supported by rare organelles myelinosomes that are detected not only in degenerative Huntington’s disease R6/1 retina but also in various pathological states of the retina and of the retinal pigmented epithelium. The intra-retinal traffic and inter-cellular exchange of myelinosomes was discussed in the context of a dual role of the myelinosome-driven secretion mechanism for proteostasis maintenance in different ocular compartments. Special focus was made on the interplay between degradative and non-degradative strategies in ocular pathophysiology, to delineate potential therapeutic approaches to counteract several vision diseases.

Keywords: myelinosome driven; proteostasis maintenance; myelinosome; driven secretion

Journal Title: Neural Regeneration Research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.