Parkinson's disease (PD) lacks a definitive diagnosis due to a lack of pathological validation of patients at antemortem. The risk of misdiagnosis is high in the early stages of PD,… Click to show full abstract
Parkinson's disease (PD) lacks a definitive diagnosis due to a lack of pathological validation of patients at antemortem. The risk of misdiagnosis is high in the early stages of PD, often eluded by atypical parkinsonian symptoms. Neuroimaging and laboratory biomarkers are being sought to aid in the clinical diagnosis of PD. Nigrosome imaging and neuromelanin (NM)-sensitive magnetic resonance imaging (MRI) are the new emerging tools, both technically simple plus cost-effective for studying nigral pathology, and have shown potential for authenticating the clinical diagnosis of PD. Visual assessment of the nigrosome-1 appearance, at 3 or 7 Tesla, yields excellent diagnostic accuracy for differentiating idiopathic PD from healthy controls. Moreover, midbrain atrophy and putaminal hypointensity in nigrosome-1 imaging are valid pointers in distinguishing PD from allied parkinsonian disorders. The majority of studies employed T2 and susceptibility-weighted imaging MRI sequences to visualize nigrosome abnormalities, whereas T1-weighted fast-spin echo sequences were used for NM imaging. The diagnostic performance of NM-sensitive MRI in discriminating PD from normal HC can be improved further. Longitudinal studies with adequate sampling of varied uncertain PD cases should be designed to accurately evaluate the sensitivity and diagnostic potential of nigrosome and NM imaging techniques. Equal weightage is to be given to uniformity and standardization of protocols, data analysis, and interpretation of results. There is tremendous scope for identifying disease-specific structural changes in varied forms of parkinsonism with these low-cost imaging tools. Nigrosome-1 and midbrain NM imaging may not only provide an accurate diagnosis of PD but could mature into tools for personally tailored treatment and prognosis.
               
Click one of the above tabs to view related content.