LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Virulence of Mycobacterium avium Subsp. hominissuis Human Isolates in an in vitro Macrophage Infection Model

Photo by paipai90 from unsplash

Background: Mycobacterium avium subsp. hominissuis (MAH) is an environmental opportunistic pathogen for humans and swine worldwide; in humans, the vast majority of MAH infections is due to strains belonging to… Click to show full abstract

Background: Mycobacterium avium subsp. hominissuis (MAH) is an environmental opportunistic pathogen for humans and swine worldwide; in humans, the vast majority of MAH infections is due to strains belonging to specific genotypes, such as the internal transcribed spacer (ITS)-sequevars Mav-A and Mav-B that mostly cause pulmonary infections in elderly patients and severe disseminated infections in acquired immunodeficiency syndrome patients, respectively. To test whether the different types of infections in distinct patients' populations might reflect a different virulence of the infecting genotypes, MAH human isolates, genotyped by ITS sequencing and MIRU-VNTR minisatellite analysis, were studied for the capacity to infect and replicate in human macrophages in vitro. Methods: Cultures of human peripheral blood mononuclear cells and phagocytic human leukemic cell line THP-1 cells were infected with each MAH isolate and intracellular colony-forming units (CFU) were determined. Results: At 2 h after infection, i.e., immediately after cell entry, the numbers of intracellular bacteria did not differ between Mav-A and Mav-B organisms in both phagocytic cell types. At 5 days, Mav-A organisms, sharing highly related VNTR-MIRU genotypes, yielded numbers of intracellular CFUs significantly higher than Mav-B organisms in both phagocytic cell types. MIRU-VNTR-based minimum spanning tree analysis of the MAH isolates showed a divergent phylogenetic pathway of Mav-A and Mav-B organisms. Conclusion: Mav-A and Mav-B sequevars might have evolved different pathogenetic properties that might account for their association with different human infections.

Keywords: mav; subsp hominissuis; human isolates; mav mav; mycobacterium avium; avium subsp

Journal Title: International Journal of Mycobacteriology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.