Context: Resistance of cancer cells to chemotherapeutic drugs is a major pitfall of the failure of chemotherapy treatment for cholangiocarcinoma (CCA). A new therapeutic strategy that can improve treatment efficacy… Click to show full abstract
Context: Resistance of cancer cells to chemotherapeutic drugs is a major pitfall of the failure of chemotherapy treatment for cholangiocarcinoma (CCA). A new therapeutic strategy that can improve treatment efficacy is mandatory for CCA patients. Our previous findings demonstrated the overexpression of methionine aminopeptidase-2 (MetAP2) in CCA patients. In addition, supplementation of TNP-470, a MetAP2 inhibitor, significantly inhibited the growth and metastatic activities of CCA cell lines. However, the molecular mechanism of antitumor activity of TNP-470 and the synergistic antitumor activity of TNP-470 combined with chemotherapeutic drugs are still unknown. Aims: The aim of this study is to evaluate the molecular mechanism of anticancer activity and the potential use of TNP-470 as a chemosensitizing agent in CCA cell lines. Materials and Methods: Cell cycle and apoptosis of CCA cell lines were evaluated using flow cytometry with propidium iodide staining. Expression of apoptosis regulatory proteins was measured by Western blotting. The chemosensitizing effect of TNP-470 was determined using combination index. Results: TNP-470 inhibited the growth of CCA cells via induction of apoptosis through activation of the p38-phosphorylation and up- and down-regulation of Bax and Bcl-xL, respectively. Furthermore, TNP-470 significantly enhanced the antitumor activity of 5-fluorouracil, cisplatin, doxorubicin, and gemcitabine. Conclusions: The present results show that TNP-470 could be a potential therapeutic or adjuvant agent for CCA.
               
Click one of the above tabs to view related content.