Radiological imaging is an important modality of today's overall practicum. Imaging can begin as early as the 1st day of life. Neonates are 3–4 times more sensitive to radiation than… Click to show full abstract
Radiological imaging is an important modality of today's overall practicum. Imaging can begin as early as the 1st day of life. Neonates are 3–4 times more sensitive to radiation than adults. The purpose of the work was to assess the diagnostic reference level (DRL), the radiation organ dose, and effective organ dose for both sexes from chest anteroposterior radiograph, which is the most common radiographic examination performed at the Neonatal Intensive Care Unit (NICU). The entrance air kerma was measured using a solid-state PIN type detector, and the value was used as the input factor to PCXMC-2.0 software to calculate the entrance surface air kerma (ESAK), patient-specific organ dose, and effective dose originated from chest anteroposterior examinations of neonates at NICU. The mean value of ESAK is taken as a diagnostic reference level (DRL) for neonates (both male and female). The mean ESAK value of male neonates is (79.6 ± 1.4) μGy and for female is (79.9 ± 1.9) μGy, and the institutional diagnostic reference level (DRL) is 80.35 μGy for male and 81.2 μGy for female (i.e., third quartile value). A statistical dependency (correlation) between neonates body mass index (BMI) and ESAK was defined for both the sexes. Significant positive correlation was found between ESAK per patient with respect to BMI of both male (R = 0.83, P = 0.00001) and female (R = 0.72, P = 0.00055) neonates. The results for neonatal dose in NICU were compatible with the literature. The result presented will serve as baseline data for the selection of technical parameters in neonatal chest anteroposterior X-ray examination.
               
Click one of the above tabs to view related content.