LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Radioprotective potential of Asparagus racemosus root extract and isoprinosine against electron beam radiation-induced immunosupression and oxidative stress in swiss albino mice

Photo from wikipedia

Background: Radiotherapy is an important and the most common treatment modality for human cancers. Cancer radiotherapy is associated with unadorned side effects that results from normal tissue damage which is… Click to show full abstract

Background: Radiotherapy is an important and the most common treatment modality for human cancers. Cancer radiotherapy is associated with unadorned side effects that results from normal tissue damage which is a major subject of concern. Radiation induces damage to living cells due generation of aqueous-free radicals. Therefore, there is a crucial need for the protection of normal cells surrounding the tumor from radiation injury; and hence, the identification of radiation-protecting agents is a chief goal for basic radiation biologists and oncologists. Aim: The aim of this present study was to assess the radioprotective potential of Asparagus racemosus root ethanolic extract (ARE), and isoprinosine (IPR) against electron beam radiation (EBR)-induced immunosuppression and oxidative stress in Swiss Albino mice. Materials and Methods: Swiss albino mice were used for the assessment of the radioprotective potential of ARE and IPR against EBR-induced immunosuppression and oxidative stress. Cytokine estimations, namely, interleukin-2, interferon-gamma, and tumor necrosis factor-alpha were performed in the liver homogenate using ELISA kits, and bone marrow cellularity was determined in the experimental animals. Results: The results of the present study demonstrated the radioprotective and immunostimulatory efficacy of ARE and IPR against EBR-induced cytokine and bone marrow cellularity alterations. Conclusion: The findings of our study demonstrate the potential of ARE and IPR in mitigating radiation-induced mortality by offering protection to mice against lethal dose of whole body EBR. The present study also demonstrates that ARE and IPR exert its radioprotection against EBR induced immunosuppression by regulating cytokines.

Keywords: radioprotective potential; radiation; albino mice; swiss albino; oxidative stress

Journal Title: Journal of Natural Science, Biology and Medicine
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.