LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Existence, multiplicity and regularity of solutions for the fractional $p$-Laplacian equation

Photo by timaesthetic from unsplash

We are concerned with the following elliptic equations: { (−∆)pu = λf(x, u) in Ω, u = 0 on RN\Ω, where λ are real parameters, (−∆)p is the fractional p-Laplacian… Click to show full abstract

We are concerned with the following elliptic equations: { (−∆)pu = λf(x, u) in Ω, u = 0 on RN\Ω, where λ are real parameters, (−∆)p is the fractional p-Laplacian operator, 0 < s < 1 < p < +∞, sp < N , and f : Ω × R → R satisfies a Carathéodory condition. By applying abstract critical point results, we establish an estimate of the positive interval of the parameters λ for which our problem admits at least one or two nontrivial weak solutions when the nonlinearity f has the subcritical growth condition. In addition, under adequate conditions, we establish an apriori estimate in L∞(Ω) of any possible weak solution by applying the bootstrap argument.

Keywords: fractional laplacian; solutions fractional; multiplicity regularity; laplacian equation; existence multiplicity; regularity solutions

Journal Title: Journal of The Korean Mathematical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.