LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The exponential growth and decay properties for solutions to elliptic equations in unbounded cylinders

Photo from wikipedia

In this paper, we classify all solutions bounded from below to uniformly elliptic equations of second order in the form of Lu(x) = aij(x)Diju(x) + bi(x)Diu(x) + c(x)u(x) = f(x)… Click to show full abstract

In this paper, we classify all solutions bounded from below to uniformly elliptic equations of second order in the form of Lu(x) = aij(x)Diju(x) + bi(x)Diu(x) + c(x)u(x) = f(x) or Lu(x) = Di(aij(x) Dju(x)) + bi(x)Diu(x) + c(x)u(x) = f(x) in unbounded cylinders. After establishing that the Aleksandrov maximum principle and boundary Harnack inequality hold for bounded solutions, we show that all solutions bounded from below are linear combinations of solutions, which are sums of two special solutions that exponential growth at one end and exponential decay at the another end, and a bounded solution that corresponds to the inhomogeneous term f of the equation.

Keywords: growth decay; unbounded cylinders; elliptic equations; exponential growth

Journal Title: Journal of The Korean Mathematical Society
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.