Abstract For a centre-by-metabelian pro- $p$ group $G$ of type $\text{FP}_{2m}$ , for some $m\geqslant 1$ , we show that $\sup _{M\in {\mathcal{A}}}$ rk $H_{i}(M,\mathbb{Z}_{p}) Click to show full abstract
Abstract For a centre-by-metabelian pro- $p$ group $G$ of type $\text{FP}_{2m}$ , for some $m\geqslant 1$ , we show that $\sup _{M\in {\mathcal{A}}}$ rk $H_{i}(M,\mathbb{Z}_{p})<\infty$ , for all $0\leqslant i\leqslant m$ , where ${\mathcal{A}}$ is the set of all subgroups of $p$ -power index in $G$ and, for a finitely generated abelian pro- $p$ group $V$ , rk $V=\dim V\otimes _{\mathbb{Z}_{p}}\mathbb{Q}_{p}$ .
               
Click one of the above tabs to view related content.