Abstract We study the semilinear Schrödinger equation $$\left\{ _{u\,\,\in \,\,{{H}^{1}}({{\mathbf{R}}^{N}}),}^{-\Delta \,u+V(x)u=f(x,u),\,\,\,\,\,x\in \,\,{{\mathbf{R}}^{N}},} \right.$$ where $f$ is a superlinear, subcritical nonlinearity. It focuses on the case where $V(x)={{V}_{0}}(x)+{{V}_{1}}(x)$ , ${{V}_{0}}\in C({{\mathbf{R}}^{N}}),\,{{V}_{0}}(x)$… Click to show full abstract
Abstract We study the semilinear Schrödinger equation $$\left\{ _{u\,\,\in \,\,{{H}^{1}}({{\mathbf{R}}^{N}}),}^{-\Delta \,u+V(x)u=f(x,u),\,\,\,\,\,x\in \,\,{{\mathbf{R}}^{N}},} \right.$$ where $f$ is a superlinear, subcritical nonlinearity. It focuses on the case where $V(x)={{V}_{0}}(x)+{{V}_{1}}(x)$ , ${{V}_{0}}\in C({{\mathbf{R}}^{N}}),\,{{V}_{0}}(x)$ is 1-periodic in each of ${{x}_{1}},{{x}_{2}},...,{{x}_{N}}$ , $\sup [\sigma (-\Delta +{{V}_{0}})\,\cap \,(-\infty ,0)]<0<$ $\inf [\sigma (-\Delta +{{V}_{0}})\cap (0,\infty )],\,{{V}_{1}}\in C({{\mathbf{R}}^{N}})$ , and ${{\lim }_{|x|\to \infty }}\,{{V}_{1}}(x)=0$ . A new super-quadratic condition is obtained that is weaker than some well-known results.
               
Click one of the above tabs to view related content.