Abstract In this paper, a newnotion of scalar curvature for a Finsler metric $F$ is introduced, and two conformal invariants $Y(M,F)$ and $C(M,F)$ are defined. We prove that there exists… Click to show full abstract
Abstract In this paper, a newnotion of scalar curvature for a Finsler metric $F$ is introduced, and two conformal invariants $Y(M,F)$ and $C(M,F)$ are defined. We prove that there exists a Finsler metric with constant scalar curvature in the conformal class of $F$ if the Cartan torsion of $F$ is sufficiently small and $Y(M,F)C(M,F)
               
Click one of the above tabs to view related content.