Abstract We study Fourier transforms of regular holonomic ${\mathcal{D}}$-modules. In particular, we show that their solution complexes are monodromic. An application to direct images of some irregular holonomic ${\mathcal{D}}$-modules will… Click to show full abstract
Abstract We study Fourier transforms of regular holonomic ${\mathcal{D}}$-modules. In particular, we show that their solution complexes are monodromic. An application to direct images of some irregular holonomic ${\mathcal{D}}$-modules will be given. Moreover, we give a new proof of the classical theorem of Brylinski and improve it by showing its converse.
               
Click one of the above tabs to view related content.