LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ideals of the Quantum Group Algebra, Arens Regularity and Weakly Compact Multipliers

Photo from wikipedia

Abstract Let $\mathbb{G}$ be a locally compact quantum group and let $I$ be a closed ideal of $L^{1}(\mathbb{G})$ with $y|_{I}\neq 0$ for some $y\in \text{sp}(L^{1}(\mathbb{G}))$. In this paper, we give… Click to show full abstract

Abstract Let $\mathbb{G}$ be a locally compact quantum group and let $I$ be a closed ideal of $L^{1}(\mathbb{G})$ with $y|_{I}\neq 0$ for some $y\in \text{sp}(L^{1}(\mathbb{G}))$. In this paper, we give a characterization for compactness of $\mathbb{G}$ in terms of the existence of a weakly compact left or right multiplier $T$ on $I$ with $T(f)(y|_{I})\neq 0$ for some $f\in I$. Using this, we prove that $I$ is an ideal in its second dual if and only if $\mathbb{G}$ is compact. We also study Arens regularity of $I$ whenever it has a bounded left approximate identity. Finally, we obtain some characterizations for amenability of $\mathbb{G}$ in terms of the existence of some $I$-module homomorphisms on $I^{\ast \ast }$ and on $I^{\ast }$.

Keywords: quantum group; ideals quantum; group algebra; arens regularity; weakly compact

Journal Title: Canadian Mathematical Bulletin
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.