LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Corrosion Resistance of Ti-6Al-4V Machined Surfaces Improved by Thermal Oxidation

Photo from wikipedia

Ti-6A-l4V alloy is widely used in implants and prosthesis applications. Although machining is a fast and economical process, the roughness generated can compromise corrosion resistance. Thus, the goal of this… Click to show full abstract

Ti-6A-l4V alloy is widely used in implants and prosthesis applications. Although machining is a fast and economical process, the roughness generated can compromise corrosion resistance. Thus, the goal of this study was to overcome this limitation using thermal oxidation in machined surfaces. Samples with polished surfaces were used for comparison purposes. Two sets of machining parameters were used to generate different roughness, property evaluated in polished and machined samples before and after thermal oxidation. Vickers microhardness and polarization tests using simulated body fluid (SBF) were also performed. Thermal oxidation generated similar microhardness for polished and machined samples, higher than for polished and non-oxidized condition. On the other hand, oxidation increased the roughness only for polished condition. The corrosion resistance was improved in all oxidized samples, and the best result was found to the intermediate roughness (Ra = 0.76 um), in a machined sample. The results demonstrated that thermal oxidation can be used to overcome machining limitations regarding corrosion resistance, achieving behavior even better than polished samples.

Keywords: thermal oxidation; corrosion resistance; oxidation; machined surfaces

Journal Title: Engineering Journal
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.