LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Albuterol Delivery Efficiency in a Pediatric Model of Noninvasive Ventilation With a Single-Limb Circuit

BACKGROUND: Pediatric patients treated with noninvasive ventilation (NIV) are frequently given aerosol therapy. Limited pediatric data are available on the efficiency of aerosol delivery efficiency. We evaluated the effect of… Click to show full abstract

BACKGROUND: Pediatric patients treated with noninvasive ventilation (NIV) are frequently given aerosol therapy. Limited pediatric data are available on the efficiency of aerosol delivery efficiency. We evaluated the effect of different nebulizers, positions in the single-limb ventilator circuit, and ventilator settings on the efficiency of aerosol delivery in a model of pediatric NIV. We hypothesized that using a vibrating mesh nebulizer, placing the nebulizer after the circuit leak, and not using the highest inspiratory positive airway pressure would increase aerosol delivery efficiency. METHODS: We connected a breathing simulator in series to a low-dead-space filter holder (lung dose) and to an anatomically correct face/airway model of a 5-y-old child. A mask with an entrainment elbow was connected to a ventilator operated in a NIV bi-level mode and assembled with a single-limb heated-wired circuit. Inspiratory/expiratory pressures of either 15/5 or 20/5 cm H2O were used. We studied 3 different jet nebulizers and 2 vibrating mesh nebulizers loaded with albuterol solution (2.5 mg/3 mL). Albuterol was measured with spectrophotometry. The outcome measure was the efficiency of aerosol delivery (ie, lung dose expressed as percentage of the nominal dose). RESULTS: Vibrating mesh nebulizers placed after the exhalation port of the circuit had the highest delivery efficiency, even compared with a vibrating mesh nebulizer integrated into the mask. Placing the nebulizer after the exhalation port of the circuit increased efficiency for all nebulizers. Vibrating mesh nebulizers were more efficient than jet nebulizers, regardless of their position in the circuit. Increasing the inspiratory pressure resulted in a variable effect on aerosol-delivery efficiency. CONCLUSIONS: In a model of pediatric NIV using a single-limb circuit, aerosol delivery devices were more efficient when placed after the exhalation port of the ventilator circuit. Vibrating mesh nebulizers were more efficient than jet nebulizers.

Keywords: aerosol delivery; single limb; circuit; efficiency; delivery efficiency

Journal Title: Respiratory Care
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.