LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydration Characteristics and Synthesis of Hauyne-Belite Cement as Low Temperature Sintering Cementitious Materials

Photo from wikipedia

OPC production requires high calorific value and emits a large amount of CO2 through decarbonation of limestone, accounting for about 7% of CO2 emissions. To reduce CO2 emissions during the… Click to show full abstract

OPC production requires high calorific value and emits a large amount of CO2 through decarbonation of limestone, accounting for about 7% of CO2 emissions. To reduce CO2 emissions during the Ordinary Portland Cement (OPC) production process, there is a method of reducing the consumption of cement or lower temperature calcination for OPC product. In this study, for energy consumption reduction, we prepared Hauyne-belite cement by calcination at a low temperature compared to that used for OPC and studied the early hydration properties of the synthesized Hauyne-belite cement. We set the ratios of Hauyne and belite to 8 : 2, 5 : 5 and 3 : 7. For the hydration properties of the synthesized Hauyne-belite cement, we tested heat of hydration of paste and the compressive strength of mortar, using XRD and SEM for analysis of hydrates. As for our results, the temperature for optimum synthesis of Hauyne-belite is 1,250C. Compressive strength of synthesized Hauyne-belite cement is lower than that of OPC, but it is confirmed that compressive strength of synthesized Hauyne-belite cement with mixing in of some other materials can be similar to that of OPC.

Keywords: low temperature; belite cement; cement; hydration; hauyne belite

Journal Title: Journal of The Korean Ceramic Society
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.