LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

DAFI: An Open-Source Framework for Ensemble-Based Data Assimilation and Field Inversion

Photo from wikipedia

In many areas of science and engineering, it is a common task to infer physical fields from sparse observations. This paper presents the DAFI code intended as a flexible framework… Click to show full abstract

In many areas of science and engineering, it is a common task to infer physical fields from sparse observations. This paper presents the DAFI code intended as a flexible framework for two broad classes of such inverse problems: data assimilation and field inversion. DAFI generalizes these diverse problems into a general formulation and solves it with ensemble Kalman filters, a family of ensemble-based, derivative-free, Bayesian methods. This Bayesian approach has the added advantage of providing built-in uncertainty quantification. Moreover, the code provides tools for performing common tasks related to random fields, as well as I/O utilities for integration with the open-source finite volume tool OpenFOAM. The code capabilities are showcased through several test cases including state and parameter estimation for the Lorenz dynamic system, field inversion for the diffusion equations, and uncertainty quantification. The object-oriented nature of the code allows for easily interchanging different solution methods and different physics problems. It provides a simple interface for the users to supply their domain-specific physics models. Finally, the code can be used as a test-bed for new ensemble-based data assimilation and field inversion methods.

Keywords: field; assimilation field; physics; field inversion; data assimilation

Journal Title: Communications in Computational Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.