LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of Gas Cyclone-Liquid Jet Absorption Separator for Flue-Gas Desulfurization

Photo by rockstaar_ from unsplash

ABSTRACTA gas cyclone–liquid jet absorption separator integrates the functions of cyclone separation, liquid jet atomization, and absorption separation. This study employed this device to conduct a wet flue-gas desulfurization experiment… Click to show full abstract

ABSTRACTA gas cyclone–liquid jet absorption separator integrates the functions of cyclone separation, liquid jet atomization, and absorption separation. This study employed this device to conduct a wet flue-gas desulfurization experiment on a gas mixture consisting of air in room temperature and sulfur dioxide (SO2) to explore this device’s prospect of tail gas purification. Sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) solutions at various concentrations were used as absorbents under room temperature. The changes in the SO2 removal efficiency and air pressure drop were investigated with parameters including total gas flow, SO2 concentration in the flue gas, and absorbent flow. The SO2 removal efficiency increased to a certain extent as the absorbent concentration, total gas flow, and absorbent flow increased. The maximum SO2 removal efficiencies of NaOH and Na2CO3 were 85% and 77%, respectively. Under identical experimental conditions, the changes in SO2 removal efficiencies of NaOH and Na2CO3 exhibited essentially identical trends, in which NaOH exhibited a 5%–8% greater SO2 removal efficiency than Na2CO3.

Keywords: flue gas; cyclone; gas; so2 removal; liquid jet

Journal Title: Aerosol and Air Quality Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.