LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Variations of Chemical Composition and Source Apportionment of PM2.5 during Winter Haze Episodes in Beijing

Photo from wikipedia

ABSTRACTPM2.5 samples were collected in Beijing between February 24 and March 12 of 2014, and analyzed to examine chemical compositions and origins of the PM2.5 at pollution levels of clean… Click to show full abstract

ABSTRACTPM2.5 samples were collected in Beijing between February 24 and March 12 of 2014, and analyzed to examine chemical compositions and origins of the PM2.5 at pollution levels of clean (PM2.5 250 µg m–3). The mean PM2.5 concentration was 137.7 ± 124.8 µg m–3 during the observation period, accounting for 66% of PM10. As all aerosol species concentrations increased with the pollution level, the contributions of secondary inorganic aerosols (SIA) to PM2.5 continuously increased while the contributions of OC and EC decreased, indicating a substantial contribution from secondary formation to the elevation of PM2.5 pollution. The acidity of PM2.5, the ratio of anion microequivalent concentration to cation, increased from 0.96 to 1.08 as pollution levels increased. Using a PMF model, secondary inorganic aerosols, industrial emissions, soil dust, traffic emissions, and coal combustion and biomass burning were identified as contributors to the PM2.5, and on average accounted 46%, 20%, 10%, 6% and 18% of the PM2.5, respectively, in the observation period. Industrial emissions were the dominant PM2.5 source during the clean period (60%). Except for traffic emission, sources of PM2.5 at the light-medium level were consistent, accounting for 17%–29%. Secondary inorganic aerosols were the largest origin of PM2.5 at heavy and severe pollution levels, accounting for 40% and 78%, respectively. In addition, the 48 h transport distances of air masses decreased from 2000 km (clean) to 300 km (severe level) and the proportion of air masses from south pollution areas in the total air masses at each pollution level increased from 0% to 97%, indicating that the stability of near surface air and the northerly transport of pollutants from the south at local and regional scales played a the key role in the PM2.5 elevation.

Keywords: pm2; pollution; source; pollution levels; level; air

Journal Title: Aerosol and Air Quality Research
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.