LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Impact of Meteorological Factors on Fine Particulate Pollution in Northeast China

Photo from wikipedia

ABSTRACT Due to biomass burning and coal combustion, heavy fine particulate matter (PM2.5) pollution frequently occurs in Northeast China, threatening the health of more than 117 million inhabitants. Although meteorological… Click to show full abstract

ABSTRACT Due to biomass burning and coal combustion, heavy fine particulate matter (PM2.5) pollution frequently occurs in Northeast China, threatening the health of more than 117 million inhabitants. Although meteorological conditions have always been considered key factors in the accumulation and dilution of PM2.5 pollution, their exact contribution to particulate pollution in Northeast China is still highly uncertain. Applying multiple regression analysis to observational data, we identify the wind speed, temperature inversion, and height of the planetary boundary layer as the dominant meteorological factors affecting PM2.5 pollution (PM2.5 > 75 µg m–3) in the major cities of Northeast China, with the wind speed and the planetary boundary layer playing the primary roles in Harbin and Shenyang, and Changchun, respectively. Heavy pollution (PM2.5 > 150 µg m–3) in this region typically occurs when the wind speed is less than 20 knots, the planetary boundary layer is below 500 m, and the temperature inversion is greater than 6°C. These results suggest that reducing the PM2.5 pollution requires us to focus not only on anthropogenic emissions but also on special meteorological conditions that can affect the air pollution mechanisms in Northeast China.

Keywords: pollution; particulate pollution; northeast china; pollution northeast; fine particulate; pm2 pollution

Journal Title: Aerosol and Air Quality Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.