According to the problem that the low measurement accuracy of TH-1 satellite star sensor, the low frequency and “slow drift” error which cannot be ignored in the attitude determination system,… Click to show full abstract
According to the problem that the low measurement accuracy of TH-1 satellite star sensor, the low frequency and “slow drift” error which cannot be ignored in the attitude determination system, resulting in obvious random error in the horizontal position and elevation direction, and the change of the error with time and latitude, cannot be calibrated by the ground field of the real problem. In this paper, a low frequency detection model is established by using the principle of relative orientation, and the low frequency error is obtained by parallax elimination. Finally, the satellite attitude is compensated and the more accurate exterior orientation elements are obtained, thus improving the positioning accuracy and stability. The experimental results show that: the proposed methods are feasible, and by using the model to dynamically calibrate the exterior orientation angle elements on orbit, the plane and elevation errors of the ground points can be basically eliminated. The global uncontrollable positioning accuracy and stability of the photogrammetry satellite are improved.
               
Click one of the above tabs to view related content.