LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Overexpression of GATA binding protein 4 and myocyte enhancer factor 2C induces differentiation of mesenchymal stem cells into cardiac-like cells

BACKGROUND Heart diseases are the primary cause of death all over the world. Following myocardial infarction, billions of cells die, resulting in a huge loss of cardiac function. Stem cell-based… Click to show full abstract

BACKGROUND Heart diseases are the primary cause of death all over the world. Following myocardial infarction, billions of cells die, resulting in a huge loss of cardiac function. Stem cell-based therapies have appeared as a new area to support heart regeneration. The transcription factors GATA binding protein 4 (GATA-4) and myocyte enhancer factor 2C (MEF2C) are considered prominent factors in the development of the cardiovascular system. AIM To explore the potential of GATA-4 and MEF2C for the cardiac differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs). METHODS hUC-MSCs were characterized morphologically and immunologically by the presence of specific markers of MSCs via immunocytochemistry and flow cytometry, and by their potential to differentiate into osteocytes and adipocytes. hUC-MSCs were transfected with GATA-4, MEF2C, and their combination to direct the differentiation. Cardiac differentiation was confirmed by semiquantitative real-time polymerase chain reaction and immunocytochemistry. RESULTS hUC-MSCs expressed specific cell surface markers CD105, CD90, CD44, and vimentin but lack the expression of CD45. The transcription factors GATA-4 and MEF2C, and their combination induced differentiation in hUC-MSCs with significant expression of cardiac genes i.e., GATA-4, MEF2C, NK2 homeobox 5 (NKX2.5), MHC, and connexin-43, and cardiac proteins GATA-4, NKX2.5, cardiac troponin T, and connexin-43. CONCLUSION Transfection with GATA-4, MEF2C, and their combination effectively induces cardiac differentiation in hUC-MSCs. These genetically modified MSCs could be a promising treatment option for heart diseases in the future.

Keywords: differentiation; huc mscs; gata binding; stem cells; gata mef2c

Journal Title: World Journal of Stem Cells
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.