Cast iron materials are used as materials for cylinder heads for heavy duty internal combustion engines. These components must withstand severe cyclic mechanical and thermal loads throughout their service life.… Click to show full abstract
Cast iron materials are used as materials for cylinder heads for heavy duty internal combustion engines. These components must withstand severe cyclic mechanical and thermal loads throughout their service life. While high-cycle fatigue (HCF) is dominant for the material in the water jacket region, the combination of thermal transients with mechanical load cycles results in thermomechanical fatigue (TMF) of the material in the fire deck region, even including superimposed TMF and HCF loads. Increasing the efficiency of the engines directly leads to increasing combustion pressure and temperature and, thus, lower safety margins for the currently used cast iron materials or alternatively the need for superior cast iron materials. In this paper (Part I), the TMF properties of the lamellar graphite cast iron GJL250 and the vermicular graphite cast iron GJV450 are characterized in uniaxial tests and a mechanism-based model for TMF life prediction is developed for both materials. The model can be used to estimate the fatigue life of components by means of finite-element calculations (Part II of the paper) and supports engineers in finding the appropriate material and design. Furthermore, the effect of the elastic, plastic and creep properties of the materials on the fatigue life can be evaluated with the model. However, for a material selection also the thermophysical properties, controlling to a high level the thermal stresses in the component, must be considered. Hence, the need for integral concepts for material characterization and selection from a multitude of existing and soon-to-be developed cast iron materials is discussed.
               
Click one of the above tabs to view related content.