Over the past two decades, hundreds of new somatic mutations have been identified in tumours, and a few dozen novel cancer therapeutics that selectively target these mutated oncoproteins have entered… Click to show full abstract
Over the past two decades, hundreds of new somatic mutations have been identified in tumours, and a few dozen novel cancer therapeutics that selectively target these mutated oncoproteins have entered clinical practice. This development has resulted in clinical breakthroughs for a few tumour types, but more commonly patients' overall survival has not improved because of the development of drug resistance. Furthermore, only a very limited number of oncoproteins, largely protein kinases, are successfully targeted, whereas most non-kinase oncoproteins inside cancer cells remain untargeted. Engineered small protein inhibitors offer great promise in targeting a larger variety of oncoproteins with better efficacy and higher selectivity. In this article, I focus on a promising class of synthetic binding proteins, termed monobodies, that we have shown to inhibit previously untargetable protein-protein interactions in different oncoproteins. I will discuss the great promise alongside the technical challenges inherent in converting monobodies from potent pre-clinical target validation tools to next-generation protein-based therapeutics.
               
Click one of the above tabs to view related content.