LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Parameters Optimization in Compression Molding of Ultra-high Molecular Weight Polyethylene/Cellulose Nanofiber Bio-nanocomposites by using Response Surface Methodology

Photo by markusspiske from unsplash

Conventional UHMWPE molding involves long pressure holding duration, nevertheless in the presence of filler such as cellulose nanofiber (CNF), this may contribute to filler degradation. This study optimized the compression… Click to show full abstract

Conventional UHMWPE molding involves long pressure holding duration, nevertheless in the presence of filler such as cellulose nanofiber (CNF), this may contribute to filler degradation. This study optimized the compression molding parameters of UHMWPE/ CNF bio-nanocomposite by using response surface methodology (RSM) in consideration of temperature, pressure and duration as variables. An optimal processing condition of 180°C, 15 MPa, and 20 minutes contributed to more than 80% desirability with tensile strength, yield strength, elongation at break, and Young’s modulus values of 22.83 MPa, 23.14 MPa, 487.31%, and 0.391 GPa, accordingly. Mechanical properties of UHMWPE/CNF bio-nanocomposites molded at optimized processing conditions were comparably similar to those prepared at conventional processing condition, and with the advantage of having shorter processing time. The results presented herewith provides insight towards a more practical approach for UHMWPE/CNF bio-nanocomposites consolidation process.

Keywords: methodology; cellulose nanofiber; bio; bio nanocomposites; using response; compression molding

Journal Title: Pertanika Journal of Science and Technology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.