LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetohydrodynamic Flow and Heat Transfer Over an Exponentially Stretching/Shrinking Sheet in Ferrofluids

Photo from wikipedia

In this research, the problem of magnetohydrodynamic flow and heat transfer over an exponentially stretching/shrinking sheet in ferrofluids is presented. The governing partial differential equations are transformed into nonlinear ordinary… Click to show full abstract

In this research, the problem of magnetohydrodynamic flow and heat transfer over an exponentially stretching/shrinking sheet in ferrofluids is presented. The governing partial differential equations are transformed into nonlinear ordinary differential equations by applying suitable similarity transformations. These equations are then solved numerically using the shooting method for some pertinent parameters. For this research, the water-based ferrofluid is considered with three types of ferroparticles: magnetite, cobalt ferrite, and manganese-zinc ferrite. The numerical solutions on the skin friction coefficient, Nusselt number, velocity and temperature profiles influenced by the magnetic parameter, wall mass transfer parameter, stretching/shrinking parameter, and volume fraction of solid ferroparticle are graphically displayed and discussed in more details. The existences of dual solutions are noticeable for the stretching/shrinking case in a specific range of limit. For the first solution, an increasing number in magnetic and suction will also give an increment of skin friction coefficient and Nusselt number over stretching/shrinking sheet. For the skin friction coefficient only, it is showed a decreasing pattern after the intersection. Besides, the presence of ferroparticles in the fluids causes a high number of the fluid’s thermal conductivity and heat transfer rate.

Keywords: shrinking sheet; heat transfer; stretching shrinking; transfer

Journal Title: Pertanika Journal of Science and Technology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.