LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of the Effect of Molybdenum on the Pitting Corrosion Behavior of Austenitic Stainless Steels Using Electrochemical Noise Technique

Photo by eiskonen from unsplash

Electrochemical noise (EN) studies were conducted on three austenitic stainless steels (SSs) with different molybdenum contents, 0.02 wt% Mo (Type 304LN SS), 2.53 wt% Mo (Type 316LN SS), and 3.58 wt% Mo (Type… Click to show full abstract

Electrochemical noise (EN) studies were conducted on three austenitic stainless steels (SSs) with different molybdenum contents, 0.02 wt% Mo (Type 304LN SS), 2.53 wt% Mo (Type 316LN SS), and 3.58 wt% Mo (Type 317LN SS), in 0.01 M FeCl3 solution at the corrosion potential (Ecorr) and at a sampling frequency of 1 Hz. The EN data were analyzed using shot noise and wavelet analysis techniques. Current transient analysis showed that the total number of current transients, as well as transients with high current amplitude, decreased with increase in Mo content indicating increased resistance to pitting corrosion. Shot noise analysis revealed higher normalized characteristic charge (q)N at low frequency in Type 304LN SS as compared to Type 316LN SS and Type 317LN SS, implying increase in pitting corrosion resulting from the absence of Mo in this steel. Pit current decreased substantially with increase in Mo content. These results were supported by the standard deviation of partial signal (SDPS) values generated ...

Keywords: pitting corrosion; austenitic stainless; electrochemical noise; corrosion; noise; type

Journal Title: Corrosion
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.