Background/Aims We aimed to investigate the role and working mechanism of Homo sapiens circular RNA_0003602 (hsa_circ_0003602) in colorectal cancer (CRC) development. Methods The expression of circ_0003602, miR-149-5p, and solute carrier… Click to show full abstract
Background/Aims We aimed to investigate the role and working mechanism of Homo sapiens circular RNA_0003602 (hsa_circ_0003602) in colorectal cancer (CRC) development. Methods The expression of circ_0003602, miR-149-5p, and solute carrier family 38 member 1 (SLC38A1) was detected by quantitative real-time polymerase chain reaction. RNase R assays were conducted to determine the characteristics of circ_0003602. CCK-8 assays, flow cytometry analysis, transwell invasion assays, wound healing assays and tube formation assays were employed to evaluate cell viability, apoptosis, invasion, migration, and angiogenesis. All protein levels were examined by Western blot or immunohistochemistry assay. The glutamine metabolism was monitored by corresponding glutamine, α-ketoglutarate and glutamate assay kits. Dual-luciferase reporter assay was utilized to confirm the targeted combination between miR-149-5p and circ_0003602 or SLC38A1. A xenograft tumor model was established to analyze the role of circ_0003602 in CRC tumor growth in vivo. Results Circ_0003602 was upregulated in CRC tissues and cell lines. Circ_0003602 silencing suppressed CRC cell viability, migration, invasion, angiogenesis, and glutaminolysis; induced cell apoptosis in vitro; and blocked tumor growth in vivo. Moreover, circ_0003602 directly interacted with miR-149-5p to negatively regulate its expression, and circ_0003602 knockdown suppressed the malignant behaviors of CRC cells largely by upregulating miR-149-5p. MiR-149-5p directly bound to the 3’ untranslated region of SLC38A1 to induce its degradation, and miR-149-5p overexpression reduced the malignant potential of CRC cells largely by downregulating SLC38A1. Circ_0003602 positively regulated SLC38A1 expression by sponging miR-149-5p in CRC cells. Conclusions Circ_0003602 knockdown impedes CRC development by targeting the miR-149-5p/SLC38A1 axis, which provides a novel theoretical basis and new insights for CRC treatment.
               
Click one of the above tabs to view related content.