LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

“Warm cover”: precursory strong signals for haze pollution hidden in the middle troposphere

Photo from wikipedia

Abstract. Eastern China (EC), located in the downstream region of the Tibetan Plateau (TP), is a large area with frequent haze pollution. In addition to air pollutant emissions, meteorological conditions… Click to show full abstract

Abstract. Eastern China (EC), located in the downstream region of the Tibetan Plateau (TP), is a large area with frequent haze pollution. In addition to air pollutant emissions, meteorological conditions are a key inducement for air pollution episodes. Based on the study of the Great Smog of London in 1952 and haze pollution in EC over recent decades, it is found that the abnormal “warm cover” (air–temperature anomalies) in the middle troposphere, as a precursory strong signal, could be connected to severe air pollution events. The convection and vertical diffusion in the atmospheric boundary layer (ABL) were suppressed by a relatively stable structure of warm cover in the middle troposphere leading to ABL height decreases, which were favorable for the accumulation of air pollutants in the ambient atmosphere. The anomalous structure of the troposphere's warm cover not only exist in heavy haze pollution on the daily scale, but also provide seasonal, interannual and interdecadal strong signals for frequently occurring regional haze pollution. It is revealed that a close relationship existed between interannual variations of the TP's heat source and the warm cover strong signal in the middle troposphere over EC. The warming TP could lead to anomalous warm cover in the middle troposphere from the plateau to the downstream EC region and even the entire East Asian region, thus causing frequent winter haze pollution in EC region.

Keywords: pollution; warm cover; haze pollution; middle troposphere

Journal Title: Atmospheric Chemistry and Physics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.