LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

B3010: a boosted TSI 3010 condensation particle counter for airborne studies

Abstract. In the present paper, we expose how we boosted the performance of a commercial condensation particle counter (CPC) model TSI 3010 to detect particles as small as 1.5 nm while preserving… Click to show full abstract

Abstract. In the present paper, we expose how we boosted the performance of a commercial condensation particle counter (CPC) model TSI 3010 to detect particles as small as 1.5 nm while preserving the robustness and reliability of the original instrument. The TSI 3010 was selected because of our deep knowledge of its internal workings and its large incorporated butanol reservoir that allows continuous operation for several hours without refill, which is well suited to airborne operation. Aside from this, it is still pretty easy to buy instruments from the TSI 3010 family from companies that specialize in used scientific instrument retail. The CPC described in this study is called B3010 hereafter, where the “B” stands for boosted. We provide an evaluation of its performances down to 1 nm using standard calibration methods and comparisons with ultrafine CPCs (TSI 3025 and TSI 3776), as well as with its original version. One important application of the B3010 is for high-altitude measurement stations and airborne studies, the instrument's detection efficiency was quantified for various inlet flow rates and pressures.

Keywords: condensation particle; airborne studies; tsi 3010; particle counter

Journal Title: Atmospheric Measurement Techniques
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.