LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolution of DARDAR-CLOUD ice cloud retrievals: new parameters and impacts on the retrieved microphysical properties

Photo by lukaszlada from unsplash

Abstract. In this paper we present the latest refinements brought to the DARDAR-CLOUD product, which contains ice cloud microphysical properties retrieved from the cloud radar and lidar measurements from the… Click to show full abstract

Abstract. In this paper we present the latest refinements brought to the DARDAR-CLOUD product, which contains ice cloud microphysical properties retrieved from the cloud radar and lidar measurements from the A-Train mission. Based on a large dataset of in situ ice cloud measurements, the parameterizations used in the microphysical model of the algorithm – i.e. the normalized particle size distribution, the mass–size relationship, and the parameterization of the a priori value of the normalized number concentration as a function of temperature – were assessed and refined to better fit the measurements, keeping the same formalism as proposed in DARDAR basis papers. Additionally, in regions where lidar measurements are available, the lidar ratio retrieved for ice clouds is shown to be well constrained by the lidar–radar synergy. Using this information, the parameterization of the lidar ratio was also refined, and the new retrieval equals on average 35±10 sr in the temperature range between −60 and −20 ∘C. The impact of those changes on the retrieved ice cloud properties is presented in terms of ice water content (IWC) and effective radius. Overall, IWC values from the new DARDAR-CLOUD product are on average 16 % smaller than the previous version, leading to a 24 % reduction in the ice water path. In parallel, the retrieved effective radii increase by 5 % to 40 %, depending on temperature and the availability of the instruments, with an average difference of +15 %. Modifications of the microphysical model strongly affect the ice water content retrievals with differences that were found to range from −50 % to +40 %, depending on temperature and the availability of the instruments. The largest differences are found for the warmest temperatures (between −20 and 0 ∘C) in regions where the cloud microphysical processes are more complex and where the retrieval is almost exclusively based on radar-only measurements. The new lidar ratio values lead to a reduction of IWC at cold temperatures, the difference between the two versions increasing from around 0 % at −30 ∘C to 70 % below −80 ∘C, whereas effective radii are not impacted.

Keywords: lidar; microphysical properties; cloud; ice; ice cloud; dardar cloud

Journal Title: Atmospheric Measurement Techniques
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.