LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exploring geometrical stereoscopic aerosol top height retrieval from geostationary satellite imagery in East Asia

Photo from wikipedia

Abstract. Despite the importance of aerosol height information for events such as volcanic eruptions and long-range aerosol transport, spatial coverage of its retrieval is often limited because of a lack… Click to show full abstract

Abstract. Despite the importance of aerosol height information for events such as volcanic eruptions and long-range aerosol transport, spatial coverage of its retrieval is often limited because of a lack of appropriate instruments and algorithms. Geostationary satellite observations in particular provide constant monitoring for such events. This study assessed the application of different viewing geometries for a pair of geostationary imagers to retrieve aerosol top height (ATH) information. The stereoscopic algorithm converts a lofted aerosol layer parallax, calculated using image-matching of two visible images, to ATH. The sensitivity study provides a reliable result using a pair of Advanced Himawari Imager (AHI) and Advanced Geostationary Radiation Imager (AGRI) images at 40∘ longitudinal separation. The pair resolved aerosol layers above 1 km altitude over East Asia. In contrast, aerosol layers must be above 3 km for a pair of AHI and Advanced Meteorological Imager (AMI) images at 12.5∘ longitudinal separation to resolve their parallax. Case studies indicate that the stereoscopic ATH retrieval results are consistent with aerosol heights determined using extinction profiles from the Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP). Comparisons between the stereoscopic ATH and the CALIOP 90 % extinction height, defined by extinction coefficient at 532 nm data, indicated that 88.9 % of ATH estimates from the AHI and AGRI are within 2 km of CALIOP 90 % extinction heights, with a root-mean-squared difference (RMSD) of 1.66 km. Meanwhile, 24.4 % of ATH information from the AHI and AMI was within 2 km of the CALIOP 90 % extinction height, with an RMSD of 4.98 km. The ability of the stereoscopic algorithm to monitor hourly aerosol height variations is demonstrated by comparison with a Korea Aerosol Lidar Observation Network dataset.

Keywords: aerosol; extinction; geostationary satellite; retrieval; height; stereoscopic

Journal Title: Atmospheric Measurement Techniques
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.