LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lagged effects dominate the inter-annual variability of the 2010–2015 tropical carbon balance

Photo from wikipedia

Abstract. Inter-annual variations in the tropical land carbon (C) balance are a dominant component of the global atmospheric CO2 growth rate. Currently, the lack of quantitative knowledge on processes controlling… Click to show full abstract

Abstract. Inter-annual variations in the tropical land carbon (C) balance are a dominant component of the global atmospheric CO2 growth rate. Currently, the lack of quantitative knowledge on processes controlling net tropical ecosystems C balance on inter-annual timescales inhibits accurate understanding and projections of land-atmosphere C exchanges. In particular, uncertainty on the relative contribution of ecosystem C fluxes attributable to concurrent meteorological forcing anomalies (concurrent effects) and those attributable to the continuing influence of past phenomena (lagged effects) stifles efforts to explicitly understand the integrated sensitivity of tropical ecosystem to climatic variability. Here we present a conceptual framework – applicable in principle to any meteorology-forced land biosphere model – to explicitly quantify net biospheric exchange (NBE) as the sum of anomaly-induced concurrent changes and climatology-induced lagged changes to terrestrial ecosystem C states (NBE = NBECON + NBELAG). We apply this framework to an observation-constrained analysis of the 2010–2015 tropical C balance: we use a data-model integration approach (CARDAMOM) to merge satellite-retrieved land-surface C observations (leaf area, biomass, solar-induced fluorescence), soil C inventory data and satellite-based atmospheric inversion estimates of CO2 and CO fluxes to produce a data-constrained analysis of the 2010–2015 tropical C cycle. We find that the inter-annual variability of lagged effects explain the majority of NBE inter-annual variability (IAV) throughout 2010–2015 across the tropics (NBELAG IAV = 112 % of NBE IAV, r = 0.87) relative to concurrent effects (NBECON IAV = 54 % of total NBE IAV, r = 0.03) and the dominance of NBELAG IAV persists across both wet and dry tropical ecosystems. The magnitude of lagged effect variations on NBE across the tropics is largely attributable to lagged effects on net primary productivity (NPP; NPPLAG IAV 88 % of NBELAG IAV, r = −0.99, p-value

Keywords: inter annual; 2015 tropical; variability; lagged effects; 2010 2015; balance

Journal Title: Biogeosciences Discussions
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.