LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the role of operational dynamics in biogeochemical efficiency of a soil aquifer treatment system

Photo from wikipedia

Abstract. Sustainable irrigation with treated wastewater (TWW) is a promising solution for water scarcity in arid and semi-arid regions. Soil aquifer treatment (SAT) provides a solution for both the need… Click to show full abstract

Abstract. Sustainable irrigation with treated wastewater (TWW) is a promising solution for water scarcity in arid and semi-arid regions. Soil aquifer treatment (SAT) provides a solution for both the need for tertiary treatment and seasonal storage of wastewater. Stresses over land use and the need to control the obtained water quality makes the optimization of SAT of great importance. This study looks into the influence of SAT systems' operational dynamics (i.e. flooding and drying periods) as well as some aspects of the inflow biochemical composition on their bio-geo-chemical state and the ultimate outflow quality. A series of four long-column experiments was conducted, aiming to examine the effect of different flooding/drying period ratios on dissolved oxygen (DO) concentrations, oxidation-reduction potential (ORP) and outflow composition. Flooding periods were kept constant at 60 minutes for all experiments while drying periods (DP) were 2.5 and 4 times the duration of the flooding periods. Our results show that the longer DP had a significant advantage over the shorter periods in terms of DO concentrations and ORP in the upper parts of the column as well as in the deeper parts, which indicates that larger volumes of the profile were able to maintain aerobic conditions. This advantage was evident also in outflow composition analyses that showed significantly lower concentrations of DOC, TKN and ammonium in the outflow for the longer DP. Comparing experimental ORP values in response to different DP to field measurements obtained in one of the SAT ponds of the SHAFDAN, Israel, we found that despite the major scale differences between the experimental 1D system and the field 3D conditions, ORP trends in response to changes in DP, qualitatively match. We conclude that longer DP not only ensure oxidizing conditions close to the surface, but also enlarge the active (oxidizing) region of the SAT. While those results still need to be verified in full scale, they suggest that SAT can be treated as a pseudo-reactor that to a great extent could be manipulated hydraulically to achieve the desired water quality while increasing the recharge volumes.

Keywords: role operational; aquifer treatment; system; treatment; operational dynamics; soil aquifer

Journal Title: Hydrology and Earth System Sciences Discussions
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.